关于到现在独立事件与互斥事件的区别与联系这个话题,相信很多小伙伴都是非常有兴趣了解的吧,因为这个话题也是近期非常火热的,那么既然现在大家都想要知道独立事件与互斥事件的区别与联系,小编也是到网上收集了一些与独立事件与互斥事件的区别与联系相关的信息,那么下面分享给大家一起了解下吧。
意味着AB时间同时发生的概率为0:P(AB)=0。
定义:设A,B是两事件,如果满足等式P(A∩B)=P(AB)=P(A)P(B),则称事件A,B相互独立,简称A,B独立。即事件B发生或不发生对事件A不产生影响,就说事件A与事件B之间存在某种“独立性”,其对象可以是多个。
注:1、P(A∩B)就是P(AB)
2、若P(A)>0,P(B)>0则A,B相互独立与A,B互不相容不能同时成立,即独立必相容,互斥必联系。
容易推广:设A,B,C是三个事件,如果满足P(AB)=P(A)P(B),P(BC)=P(B)P(C),P(AC)=P(A)P(C),P(ABC)=P(A)P(B)P(C),则称事件A,B,C相互独立。
互斥事件是指事件A和B的交集为空,也叫互不相容事件。也可叙述为:不可能同时发生的事件。如A∩B为不可能事件(A∩B=Φ),那么称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生。 若A与B互斥,则P(A+B)=P(A)+P(B),且P(A)+P(B)≤1。若a是A的对立事件,则P(A)=1-P(a)。