定积分对积分区间具有可加性这条性质多用于什么情况? 怎么证明

发布日期:2025-02-01 21:25:51     手机:https://m.xinb2b.cn/baike/news312329.html    违规举报
核心提示:1、区间短点连续且可积分,区间不包含无穷点。2、因为函数可积,所以在积分区间[a,b]上,积分和的极限是不变的。那么,在分积分区间是,总有c点使得[a,b]积分和=[a,c][c,b]积分和。3、积分的分段可加性是指他的积分区间分段可加,至

定积分对积分区间具有可加性这条性质多用于什么情况? 怎么证明

1、区间短点连续且可积分,区间不包含无穷点。

2、因为函数可积,所以在积分区间[a,b]上,积分和的极限是不变的。那么,在分积分区间是,总有c点使得[a,b]积分和=[a,c][c,b]积分和。

3、积分的分段可加性是指他的积分区间分段可加,至于自然对数不恒为0 的意义就是 使得第三个不等式成立。

 
 
本文地址:https://xinb2b.cn/baike/news312329.html,转载请注明出处。

推荐图文
推荐百科经验
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.218 second(s), 76 queries, Memory 0.5 M