可导是可微的充分必要条件。可导和可微的概念来自微积分。微积分是数学概念,是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。微积分的基本概念和内容包括微分学和积分学。
微积分是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
可导是可微的充分必要条件。可导和可微的概念来自微积分。微积分是数学概念,是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。微积分的基本概念和内容包括微分学和积分学。
微积分是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。