对称矩阵一定存在逆矩阵吗(矩阵对称两个乘法)

发布日期:2024-12-22 17:16:03     手机:https://m.xinb2b.cn/baike/news453724.html    违规举报
核心提示:是的,若A^T=A则(A^-1)^T=(A^T)^-1=A^-1,所以A^-1是对称矩阵。对称矩阵是元素以对角线为对称轴对应相等的矩阵。1855年,埃米特证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等

对称矩阵一定存在逆矩阵吗

是的,若A^T=A则(A^-1)^T=(A^T)^-1=A^-1,所以A^-1是对称矩阵。对称矩阵是元素以对角线为对称轴对应相等的矩阵。1855年,埃米特证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。

 
 
本文地址:https://xinb2b.cn/baike/news453724.html,转载请注明出处。

推荐图文
推荐百科经验
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.149 second(s), 77 queries, Memory 0.5 M