关于到现在为梯形可以确定一个平面吗 梯形的性质与判定这个话题相信很多小伙伴都是非常有兴趣了解的吧因为这个话题也是近期非常火热的那么既然现在大家都想要知道为梯形可以确定一个平面吗 梯形的性质与判定小编也是到网上收集了一些与为梯形可以确定一个平面吗 梯形的性质与判定相关的信息那么下面分享给大家一起了解下吧
因为梯形有一组对边平行故可以确定一个平面故正确梯形有4个点因为三点确定一个面(记为平面N)证明第四个点必然在此平面即可因为四个点不是位于上底就是在下底所以过第四个点的一条直线(上底或下底)与平面上一条直线平行
等腰梯形相关知识
定义
两腰相等的梯形叫做等腰梯形(isosceles trapezoid)
性质
1、等腰梯形的两条腰相等
2、等腰梯形在同一底上的两个底角相等
3、等腰梯形的两条对角线相等
4、等腰梯形是轴对称图形对称轴是上下底中点的连线所在直线(过两底中点的直线)
判定
1、两腰相等的梯形是等腰梯形;
2、同一底上的两个角相等的梯形是等腰梯形;
3、对角线相等的梯形是等腰梯形
直角梯形
定义
一腰垂直于底的梯形叫直角梯形(right trapezoid)
性质
1、直角梯形其中1个角是直角
2、有一定的稳定性但弱于非直角梯形
判定
1、一腰垂直于底的梯形是直角梯形;
2、有一个内角是直角的梯形是直角梯形
例题:△ABC中AB=ACBD、CE分别为∠ABC、∠ACB的平分线求证:四边形EBCD是等腰梯形
证明:
∵AB=AC
∴∠ABC=∠ACB
∴∠DBC=∠ECB=1/2∠ABC
∴△EBC≌△DCB(ASA)
∴BE=CD
∴AB-BE=AC-CD即AE=AD.
∴∠ABC=∠AED∴ED//BC
又∵EB与DC交于点A即EB与DC不平行
∴四边形EBCD是梯形又BE=DC
∴四边形EBCD是等腰梯形