表面张力(一种新表面张力改性方法)

发布日期:2025-03-15 17:31:50     手机:https://m.xinb2b.cn/baike/news91124.html    违规举报
核心提示:表面张力(一种新表面张力改性方法)全固态锂电池(ASSB)因其在安全性和能量密度方面的优势,有可能引发电动汽车的电池革命。各种可能的固体电解质的筛选表明,石榴石电解质由于其高的离子导电性和优异的(电)化学稳定性而具有很好的应用前景。然而,石

表面张力(一种新表面张力改性方法)

表面张力(一种新表面张力改性方法)

全固态锂电池(ASSB)因其在安全性和能量密度方面的优势,有可能引发电动汽车的电池革命。各种可能的固体电解质的筛选表明,石榴石电解质由于其高的离子导电性和优异的(电)化学稳定性而具有很好的应用前景。然而,石榴石电解质的一个主要挑战是与锂金属阳极接触不良,导致极大的界面阻抗和严重的锂枝晶生长。


来自南京工业大学等单位的研究人员,提出了一种新颖的表面张力改性方法,通过在熔融Li中加入微量的Si3N4(1wt%)来调节Li|石榴石的表面张力,从而形成亲密的Li|石榴石界面。Li-Si-N熔体不仅可以将Li|石榴石界面由点对点接触转变为连续的面对面接触,而且可以使Li剥离/沉积过程中的电场分布趋于均匀,从而显著降低其界面阻抗(25°C时为1Ω cm2),提高其循环稳定性(在0.4 mA cm−2时为1000h)和临界电流密度(1.8mA cm−2)。具体地说,与LiFePO4阴极配对的全固态全电池在2C时提供了145mAh g−1的高容量,在1C循环100次后保持了97%的初始容量。


论文链接:

https://doi.org/10.1002/adfm.202101556


综上所述,本文首次提出了用微量纳米Si3N4(1wt%)调节熔融Li的表面张力来修饰Li|石榴石界面的实验。从Li-Si-N系相图出发,结合XRD和XPS分析,发现当加热1wt%Si3N4和Li金属的混合物时,Li3N、LiSi2N3和LixSi颗粒的形成是一致的,生成的复合材料称为Li-Si-N熔体。Li-Si-N熔体通过两种方式极大地改善了与石榴石的界面接触:

1)降低了熔融Li的表面张力,使其易于扩散到石榴石颗粒上,实现了良好的物理接触;

2)降低了Li|石榴石的界面形成能,使其具有良好的化学接触。用1wt% Si3N4降低表面张力起主导作用。


如预期的那样,原始Li熔体和Li-Si-N熔体在LLZTO芯块上的接触角分别约为120°和30°。SEM图像显示,在熔融Li中引入1wt% Si3N4使Li|LLZTO界面从点对点接触转变为亲密的面对面接触,使得Li电镀/剥离过程中的电流分布均匀。密度泛函理论计算表明,熔体Li中的Li3N和LiSi2N3同时降低了Li|LLZTO的界面形成能。结果表明,改性后的固态Li/LLZTO界面在25°C下的界面阻抗为1Ωcm2,CCD值为1.8 mA cm−2。在0.4 mA cm−2下连续充放电1000h后,没有观察到枝晶Li渗入电解层。(文:SSC)


图1.示意图显示了a)纯Li熔体和b)Li-Si-N熔体的制备及其与石榴石颗粒的界面接触行为。


图2.Li-Si-N复合材料的特性分析。


图3.界面形成能的密度泛函计算


图4.a)室温下Li|LLZTO|Li和Li-Si-N|LLZTO|Li-Si-N电池的交流阻抗谱比较。


图5.a,b)全固态Li-Si-N|LLZTO|PEO-LiFePO4电池的制备和组装示意图。


 
 
本文地址:https://xinb2b.cn/baike/news91124.html,转载请注明出处。

推荐图文
推荐百科经验
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.148 second(s), 77 queries, Memory 0.51 M