二项式定理总结(二项式定理发展介绍)

发布日期:2025-02-08 11:13:31     作者:日出西方     手机:https://m.xinb2b.cn/know/kmo349326.html     违规举报

• 关注我们,解锁更多精彩内容

二项式定理最初用于开高次方。

在中国,成书于1世纪的《九章算术》提出了世界上最早的多位正整数开平方、开立方的一般程序。

11世纪中叶,贾宪在其《释锁算书》中给出了“开方作法本原图”(如图1),满足了三次以上开方的需要。此图即为直到六次幂的二项式系数表,但是,贾宪并未给出二项式系数的一般公式,因而未能建立一般正整数次幂的二项式定理。

13世纪,杨辉在其《详解九章算法》中引用了此图,并注明了此图出自贾宪的《释锁算书》。贾宪的著作已经失传,而杨辉的著作流传至今,所以今称此图为“贾宪三角”或“杨辉三角”。

14世纪初,朱世杰在其《四元玉鉴》中复载此图,并增加了两层,添上了两组平行的斜线(如图2)。


在阿拉伯,10世纪,阿尔 ·卡拉吉已经知道二项式系数表的构造方法:每一列中的任一数等于上一列中同一行的数加上该数上面一数。

11~12世纪奥马海牙姆将印度人的开平方、开立方运算推广到任意高次,因而研究了高次二项展开式。

13世纪纳绥尔丁在其《算板与沙盘算法集成》中给出了高次开方的近似公式,并用到了二项式系数表。

15世纪,阿尔 ·卡西在其《算术之钥》中介绍了任意高次开方法,并给出了直到九次幂的二项式系数表,还给出了二项式系数表的两术书中给出了一张二项式系数表,其形状与贾宪三角一样。

16世纪,许多数学家的书中都载有二项式系数表。1654年,法国的帕斯卡最早建立了一般正整数次幂的二项式定理,因此算术三角形在西方至今仍以他的名字命名。1665年,英国的牛顿将二项式定理推广到有理指数的情形。

18世纪,瑞士的欧拉和意大利的卡斯蒂隆分别采用待定系数法和“先异后同”的方法证明了实指数情形的二项式定理。


华吟时代传媒

1.点击“关注”,关注本头条号

2.进入头条号主页面,点击右上角“私信”即可联系我们

 
 
本文地址:https://xinb2b.cn/know/kmo349326.html,转载请注明出处。

推荐图文
推荐经验知识
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.137 second(s), 1 queries, Memory 2 M