线性回归的参数详解(吴恩达老师课程笔记系列第18节-多变量线性回归之正规方程)

发布日期:2024-12-31 08:22:57     作者:若能再相见     手机:https://m.xinb2b.cn/know/sjk415529.html     违规举报

第18节-多变量线性回归之正规方程,下面我们就来说一说关于线性回归的参数详解?我们一起去了解并探讨一下这个问题吧!


线性回归的参数详解

第18节-多变量线性回归之正规方程

正规方程

参考视频: 4 - 6 - Normal Equation (16 min).mkv

到目前为止,我们都在使用梯度下降算法,但是对于某些线性回归问题,正规方程方法是更好的解决方案。如:

正规方程是通过求解下面的方程来找出使得代价函数最小的参数的:

假设我们的训练集特征矩阵为 X(包含了x0=1 )并且我们的训练集结果为向量 y,则利用正规方程解出向量

上标T代表矩阵转置,上标-1 代表矩阵的逆。设矩阵

则:

以下表示数据为例:

即:

运用正规方程方法求解参数:

Octave 中,正规方程写作:

pinv(X'*X)*X'*y

注:对于那些不可逆的矩阵(通常是因为特征之间不独立,如同时包含英尺为单位的尺寸和米为单位的尺寸两个特征,也有可能是特征数量大于训练集的数量),正规方程方法是不能用的。

梯度下降与正规方程的比较:

总结一下,只要特征变量的数目并不大,标准方程是一个很好的计算参数的替代方法。具体地说,只要特征变量数量小于一万,我通常使用标准方程法,而不使用梯度下降法。

随着我们要讲的学习算法越来越复杂,例如,当我们讲到分类算法,像逻辑回归算法,我们会看到,实际上对于那些算法,并不能使用标准方程法。对于那些更复杂的学习算法,我们将不得不仍然使用梯度下降法。因此,梯度下降法是一个非常有用的算法,可以用在有大量特征变量的线性回归问题。或者我们以后在课程中,会讲到的一些其他的算法,因为标准方程法不适合或者不能用在它们上。但对于这个特定的线性回归模型,标准方程法是一个比梯度下降法更快的替代算法。所以,根据具体的问题,以及你的特征变量的数量,这两种算法都是值得学习的。

正规方程的python实现:

import numpy as np def normalEqn(X, y): theta = np.linalg.inv(X.T@X)@X.T@y #X.T@X等价于X.T.dot(X) return theta

 
 
本文地址:https://xinb2b.cn/know/sjk415529.html,转载请注明出处。

推荐图文
推荐经验知识
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.452 second(s), 1 queries, Memory 2 M