让人细思极恐的科学(不要再被复杂的现象骗了)

发布日期:2024-12-31 08:18:44     作者:先森很爱你     手机:https://m.xinb2b.cn/know/tey304277.html     违规举报


图片来源:Creative Commons

科学最美妙的地方在于其复杂中的简单,简单中的复杂。对于科学家来说,最幸福的时刻莫过于在复杂事物中“窥探”到背后简单的规律,“火候刚刚好”的几个参数或公式看起来几乎完美无瑕。不过历史上伟大的科学家都是在事实的基础上寻找最简单的理论。

编译 | 王怡博 白德凡

2021年10月5日,“复杂系统”(Complex Systems)这几个大字赫然出现在诺贝尔物理学奖的官方网站上,这是复杂性科学研究第二次获得诺贝尔奖的青睐,同时也将“复杂系统”这个看似陌生的科学词汇推向了舆论的中心。复杂性科学致力于为一些特殊的复杂现象找到最简单的解释规则——事实上,这也是大多数科学家毕生都在实践的理念。为什么科学家一直在追求理论的简单化?

奥卡姆剃刀原理

科学家对简单性的偏爱可以一直追溯到中世纪。奥卡姆的威廉(William of Occam)针对当时繁冗的形而上学争论提出了“如无必要,勿增实体”的主张。后人加以衍生,把这条原则用在了科学理论的构建上,称之为“奥卡姆剃刀原理”(Occam’s Razor)。这个原理认为,对于同一个现象的几种有效解释中,我们应该相信最简单的那个。而在此之外添加的各种冗余假设,应当被剃刀给“剃掉”。


图片来源:Creative Commons

所以,假如你路过一所房子,听到了汪汪和喵喵的叫声,那么你应该认为这家人养了狗和猫,而不应该假设他们养了狗、猫和一只不会叫的兔子。当然,兔子也可能是这家人的宠物,但现有的观察信息并不支持这个更复杂的假设。奥卡姆剃刀原理建议我们保持模型的简单性,直到新观测到的现象不足以用现有的模型解释。例如,你又从这户人家的窗口看到一双长长的耳朵,这时你才有必要把兔子加入你的假设中来。

在奥卡姆剃刀原理提出后的几个世纪里,伟大的科学家用这条原理锻造了现代科学。数学家克劳狄·托勒密(Claudius Ptolemy)用一种拜占庭式的复杂理论,给出了以地球为中心的行星运动模型。而哥白尼(Copernicus)反对托勒密的“地心说”而提出的“日心说”,用更少、更简单的运动方程描述了行星的运动现象。事实上,相比于“地心说”,哥白尼的“日心说”最大的优势就在于“简单”。


托勒密的地心说。图片来源:Wikipedia

现代科学的许多进步都涉及到一系列的简化,要么是通过统一以前完全不同的现象,要么是通过消除多余的实体。其中最伟大的实例或许是牛顿提供的,他仅仅用了三条运动定律和一个万有引力公式,就统一了地面和天上的各种运动。而后在19世纪晚期,路德维希·玻尔兹曼(Ludwig Boltzmann)将牛顿定律扩展到微观领域,将热现象简化为原子的运动,由此热现象也遵循牛顿力学了。再后来的爱因斯坦则将空间和时间统一到单一的实体——时空中,实现了物理学中最重要的简化。查尔斯·达尔文(Charles Darwin)和阿尔弗雷德·拉塞尔·华莱士(Alfred Russel Wallace)更是将整个自然世界统一在了一个定律下——自然选择,其中华莱士就提到:“理论本身应该是极其简单的。”这些科学家都认为他们的工作是消除不必要的复杂性,为观测到的现象提供一种最简单的解释方案。

为什么要选择简单?

为什么理论越简单,越有可能推动科学的进步?以英国统计学家托马斯·贝叶斯(Thomas Bayes)命名的统计方法贝叶斯推理(Bayesian inference),或许可以解释这一点。使用这套统计方法,我们能够基于不同阶段已知的信息,更新对某一解释、理论或模型的信念程度。

想象你有一个朋友,他有两个骰子。一个是简单的6面立方体,另一个则有60个面,可以掷出60个不同的数字。假设你的朋友秘密地掷出一个骰子,然后告诉你得到的点数,比如是5,你能猜出她更有可能掷出的是哪个骰子吗?就像地心说和日心说都可以解释天文数据一样,6面骰子和60面骰子都有可能掷出点数5。但它们是等概率的吗?贝叶斯推理的答案是否定的,它根据产生数据的可能性对可选模型进行加权。6面骰子掷出5的概率是1/6,而60面骰子掷出5的概率只有1/60。那么,比较可能性,点数5来自6面骰子的可能性是60面骰子的10倍。

简单性备受科学家青睐也是这个道理。简单的模型可供调节的参数更少,它们能够有效解释的现象的范围也更小。如果它们恰好符合观测现象,那么很有可能它们揭示的正是现象背后的客观规律。而模型一旦变复杂,有了更多的参数可调节,它们能够有效解释的现象的范围更大了:对于任何一组观测数据,这些复杂理论通过精巧地调解参数,都能使理论与数据相符。这样的复杂理论看似解释了更多的现象,然而距离现象背后的客观规律也更远了。

剃一剃我们的宇宙?

1965年5月,射电天文学家阿尔诺·彭齐亚斯(Arno Penzias)和罗伯特·威尔逊(Robert Wilson)用霍姆德尔喇叭天线(Holmdel Horn Antenna)——巨大的、看起来像是喇叭的装置,“聆听”来自宇宙的声音。他们试图校准天线以减少噪声,但当他们把天线对准星系外一片只有少量恒星的黑暗区域时,他们并没有得到预想中的一片寂静,相反他们意外地“听”了嘶嘶的声音——充满了整个天空的嘶嘶声。

这次偶然的发现支持了宇宙的“热爆炸”模型——宇宙最初非常小,炽热且致密,然后逐渐冷却并向外膨胀。他们“听”到的嘶嘶声是宇宙大爆炸的余辉——物质冷却后,在浩大的宇宙空间中被稀释所形成的遗迹,这在天文学中被称为“宇宙微波背景辐射”(cosmic microwave background)。科学家将宇宙最初的形态简化为了一个密度很大的点——奇点(singularity),类似于物理学中把一个物体看作一个质点,它们都符合物理学模型的基本特点之一:简单。


图片来源:Creative Commons

不过,科学家也不总是从一开始就能想到“简单”的理论。当爱因斯坦试图将引力纳入相对论时,他一开始在模型中使用了非常多的参数,力图将所有已知的信息整合到模型中。然而,十年来在复杂方程式中的苦苦挣扎却以失败告终,爱因斯坦最终还是拥抱了“奥卡姆剃刀”,把他的方程改得尽可能地简单、优雅,最终得到的理论日后不断被观测所验证。

那么我们现有的其他物理理论足够简单吗?为什么在粒子物理标准模型中的粒子中有17种之多?如果宇宙是简单的,为什么每秒钟都有万亿个几乎没有质量、又是电中性的中微子穿过我们的身体?中微子会不会是需要被“剃掉”的不必要实体?另一个不必然实体或许是神秘的暗物质,我们目前没有观测到任何直接证据表明暗物质存在,这会不会又是一个将来会被证明为虚构的物理模型?

事实上,中微子和暗物质的提出正是因为我们观测到了旧有的简单理论解释不了的新现象。上世纪20年代的物理学家困惑于β衰变过程中能量不守恒的现象,从而提出存在一种新的粒子,从反应中带走了部分能量,中微子就这样被发现了。在将这个新现象纳入已知信息后,存在中微子的假说依然是能够解释已知物理现象中最简单的。

暗物质也是如此。上世纪70年代,天文学家发现大量星系边缘的旋转速度比引力理论的预测要更大。于是天文学家猜测,可能存在我们看不到的物质,它们包裹着星系,提供了额外的引力,让星系自转速度保持在较高水平。暗物质正是为了解释旧有的引力理论无法解释的新现象而加入到粒子物理模型中。

当然,科学没有尽头,目前的标准模型也并不是我们宇宙的终极答案。未来的科学探索,一方面将会发现更多现有理论解释不了的现象,促使我们一步步调整理论,增加一些“必要的”实体;另一方面,基于目前已经观测到的现象,科学家依然可以尝试建立起更简单的模型。

比如对于引出暗物质的现象,部分科学家主张不需要添加一种现在没有任何观测证据的粒子,而是通过修改现有的引力理论解释。这样,虽然修改后的引力理论比原先的要复杂,但是比起引入暗物质,这套理论解释新现象的方式更为简单。这依然符合奥卡姆剃刀原理。在尘埃落定之前,科学家们要从这两方面做出更多的努力,寻找那个相对正确的自然规律。在这个过程中,我们依然可以见证奥卡姆剃刀原理的指导作用。

原文链接:

https://aeon.co/essays/why-is-simplicity-so-unreasonably-effective-at-scientific-explanation

原标题:简单:宇宙的终极答案?

来源:环球科学

编辑:Garrett

 
 
本文地址:https://xinb2b.cn/know/tey304277.html,转载请注明出处。

推荐图文
推荐经验知识
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.080 second(s), 1 queries, Memory 0.63 M