利用三角形面积最值解决高考题,一道2022年数学高考卷一题-有关三角运算的最小值

发布日期:2024-12-22 07:14:14     作者:唯他唯她     手机:https://m.xinb2b.cn/know/xtn251944.html     违规举报

一道2022年数学高考卷一题-有关三角运算的最小值

题目:已知三角形ABC的内角为A, B, C,其所对应的边长为a, b, c, 已知

cosA/(1 sinA)=sin2B/(1 cos2B)


的最小值。


这是2022的高考数学1卷的第18题的第二部分,第一部分跟角度有关,已经给出解答,参考本人头条文章。这里会利用第一部分的求解过程。

解:这道题的一个解题思路是利用三角学中的正切的半角公式, 即:


题中所给的等式cosA/(1 sinA)=sin2B/(1 cos2B)的右侧显然符合这个恒等式的形式, 但左侧不符合,因此需要做一个恒等变换,使其符合正切的半角公式。

因为cosA=sin(π/2-A)

且 1 sinA=1 cos(π/2-A)

所以

cosA/(1 sinA)

=sin(π/2-A)/(1 cos(π/2-A))

=tan(π/4-A/2)

已知的等式右侧

sin2B/(1 cos2B)

=tanB

因此

tan(π/4-A/2)=tanB

由于π/4-A/2>0, 所以A<π/2, 同时对应正切函数tanx, 其最小正周期为π

假如π/4-A/2 π=B, 则π π/4=B A/2<π π/4, 这是矛盾的,所以只有:

π/4-A/2=B

即A=π/2-2B

此外C=π-A-B=π/2 B

利用正弦定理:


利用三角的恒等变换公式,上面的式子做恒等变换,归为一个角B的三角函数:


设cos2B=x, 那么对应函数


求其导数等于0就可以求出使得y最小的x值, 因为:


当y’=0, 求出x=√2-1, (另一个被舍弃)

通过验算二阶导数,可知0<x<√2-1时, y”<0, x>√2-1时, y”>0,

因此x=cos2B=√2-1时,所求的式子有最小值。将cos2B=√2-1带入下列式子,


最后得出最小值为4√2-5

此题还有一种解法是利用余弦定理,同时利用正弦定理, 然后做三角变换,也可以求解。

首先:


其次根据前面的推出的角度关系可以得出A=3π/2-2C, 所以sinA=-cos2C

同时B=C-π/2, 所以sinB=-cosC, 带入上式变成都是C的函数:


 
 
本文地址:https://xinb2b.cn/know/xtn251944.html,转载请注明出处。

推荐图文
推荐经验知识
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.058 second(s), 1 queries, Memory 0.58 M