python怎么解析json(干货如何利用Python处理JSON格式的数据)

发布日期:2025-02-02 06:44:50     作者:统一战线     手机:https://m.xinb2b.cn/life/how389753.html     违规举报

作者: 俊欣

来源: 关于数据分析与可视化

JSON数据格式在我们的日常工作中经常会接触到,无论是做爬虫开发还是一般的数据分析处理,今天,小编就来分享一下当数据接口是JSON格式时,如何进行数据处理进行详细的介绍,内容分布如下

什么是JSONJSON模块的使用方法

什么是JSON

JSON(JavaScript Object Notation, JS对象简谱)是一种轻量级的数据交换格式,通常是以键值对的方式呈现,其简洁和清晰的层次结构使得JSON成为理想的数据交换语言,而在Python中处理JSON格式的模块有json和pickle两个

json模块和pickle都提供了四个方法:dumps, dump, loads, load序列化:将python的数据转换为json格式的字符串反序列化:将json格式的字符串转换成python的数据类型

序列化

首先我们来看一下序列化是如何操作的,我们首先用json.dump()将字典写入json格式的文件中


能够进行类似操作的则是dataframe当中的to_json()方法,比方说


而当你分别打开这两个文件时,里面的内容分别是以键值对呈现的json数据。另外,我们看到有json.dumps()和json.dump(), 两者看着十分的相似,但是在功能上可是大相径庭,json.dump()进行的是对json文件的读写操作,就比如上述的例子中,我们将字典数据写入json的文件中用的就是json.dump,而json.dumps()则是聚焦于数据本身类型的转换,对数据的操作,比如


反序列化

在反序列化的过程中,我们需要用到的则是json.load()和json.loads()方法,比如说


可以看到的是变量teachers的类型是字典类型,所以可以通过相应的方式来获取以及改变其中的数值以及格式,另外一种方法则是通过pandas模块中的read_json()方法,例如


从上述的例子中可以看出,json.load()主要处理的是json格式的文件,而json.loads()主要是对JSON编码的字符串进行数据类型的转换,


总结

本文主要是讲了序列化与反序列化的相关操作步骤,读者需要在其中留心的则是json.loads()与json.load(),以及json.dumps()和json.dump()之间的区别和使用场景,总的来说

json.loads():是将json格式的字符串(str)转换为字典类型(dict)的数据json.dumps():返回来,是将字典类型(dict)的数据转换成json格式的字符串json.load():用于读取json格式的文件,将文件中的数据转换为字典类型(dict)json.dump():主要用于存入json格式的文件,将字典类型转换为json形式的字符串


 
 
本文地址:https://xinb2b.cn/life/how389753.html,转载请注明出处。

推荐图文
推荐生活知识
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.036 second(s), 1 queries, Memory 0.59 M