九年级上册特殊平行四边形练习题(九年级暑假每日一题)

发布日期:2024-12-21 08:45:51     作者:相对公平     手机:https://m.xinb2b.cn/life/ndf500872.html     违规举报

《每日一题》暑期第5期

【本期例题】

平行四边形的证明

1.如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD,求证:

(1)AC⊥BD;

(2)四边形ABCD是菱形.


【分析】(1)证得△BAC是等腰三角形后利用三线合一的性质得到AC⊥BD即可;

(2)首先证得四边形ABCD是平行四边形,然后根据对角线互相垂直得到平行四边形是菱形.

证明:(1)∵AE∥BF,∴∠BCA =∠CAD,∵AC平分∠BAD,∴∠BAC =∠CAD,

∴∠BCA =∠BAC,∴△BAC是等腰三角形,∵BD平分∠ABC,∴AC⊥BD;

(2)∵△BAC是等腰三角形,∴AB = CB,∵∠CBD =∠ABD =∠BDA,

∴△ABD也是等腰三角形,∴AB = AD,∴DA = CB,∵BC∥DA,

∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形.

【总结】1. 等腰三角形高线、底边中线、顶角平分线,三线重合和据此判断;

2. 菱形的证明除了可以通过平行四边形 邻边相等还可以通过证明两

等腰三角形全等得到四边相等进行证明。

【下期预告】平行四边形与动点

 
 
本文地址:https://xinb2b.cn/life/ndf500872.html,转载请注明出处。

推荐图文
推荐生活知识
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.050 second(s), 1 queries, Memory 2.37 M