关于到现在与平面垂直的向量是法向量吗及什么是法线这个话题,相信很多小伙伴都是非常有兴趣了解的吧,因为这个话题也是近期非常火热的,那么既然现在大家都想要知道与平面垂直的向量是法向量吗及什么是法线,小编也是到网上收集了一些与与平面垂直的向量是法向量吗及什么是法线相关的信息,那么下面分享给大家一起了解下吧。
法线的定义
三维平面的法线是垂直于该平面的三维向量。曲面在某点P处的法线为垂直于该点切平面(tangent plane)的向量。
法线是与多边形(polygon)的曲面垂直的理论线,一个平面(plane)存在无限个法向量(normal vector)。在电脑图学(computer graphics)的领域里,法线决定着曲面与光源(light source)的浓淡处理(Flat Shading),对于每个点光源位置,其亮度取决于曲面法线的方向。如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。
对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。用方程ax+by+cz=d表示的平面,向量(a,b,c)就是其法线。
如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。
曲面法线的法向不具有唯一性(uniqueness),在相反方向的法线也是曲面法线。曲面在三维的边界(topological boundary)内可以分区出inward-pointing normal 与 outer-pointing normal, 有助于定义出法线唯一方法(unique way)。定向曲面的法线通常按照右手定则来确定。