证明调和平均数≤几何平均数(平均数几何平均数)

发布日期:2025-01-10 12:49:25     手机:https://m.xinb2b.cn/shenghuo/news439880.html    违规举报
核心提示:证明调和平均数≤几何平均数:利用1/[(1/a+1/b)/2]=调和平均数又称倒数平均数,是总体各统计变量倒数的算术平均数的倒数。调和平均数是平均数的一种。几何平均数是对各变量值的连乘积开项数次方根。求几何平均数的方法叫做几何平均法。

证明调和平均数≤几何平均数

证明调和平均数≤几何平均数:利用1/[(1/a+1/b)/2]=<√(ab)=<(a+b)/2,可得:1/(1/a+1/b)=ab/(a+b)<=ab/2√(ab)。

调和平均数又称倒数平均数,是总体各统计变量倒数的算术平均数的倒数。调和平均数是平均数的一种。几何平均数是对各变量值的连乘积开项数次方根。求几何平均数的方法叫做几何平均法。

 
 
本文地址:https://xinb2b.cn/shenghuo/news439880.html,转载请注明出处。

推荐图文
推荐生活健康
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.760 second(s), 82 queries, Memory 0.5 M