高中数学圆锥曲线焦点弦的应用(圆锥曲线与焦点有关的面积模型结论推导及应用)

发布日期:2024-12-22 07:22:13     作者:唯你失忆     手机:https://m.xinb2b.cn/sport/bma196576.html     违规举报

由于圆锥曲线是几何平面图形,而几何平面图形往往离不开求图形某一部分的面积。因此,今天我们先来讨论两种与圆锥曲线焦点有关的面积模型:两焦点与曲线上一点构成的三角形面积;过焦点的弦长与原点构成的三角形面积。

(1)两焦点与曲线上一点构成的三角形面积:我们设圆锥曲线上的一点为P,∠PF1F2=θ,我们可以求△PF1F2面积,反过来已知面积我们也可以求θ或者其他参数。

(2)过焦点的弦长与原点构成的三角形面积:我们设过焦点的直线AB与双曲线的夹角为θ或者斜率k,我们可以求△AOB的面积,反过来已知面积我们也可以求θ、直线斜率或者其他参数。


高中数学

注意:本结论只适合选择填空,若是大题,需要从条件和原理推导。

一、圆锥曲线与焦点有关的面积模型结论


二、两焦点与曲线上一点构成的三角形面积模型结论推导

2.1、椭圆


2.2、双曲线


三、过焦点的弦长与原点构成的三角形面积模型结论推导

3.1椭圆与双曲线


3.2、抛物线


四、例题解析



好了,今天的内容就分享到这里,如果您有疑问,可以在文章下方留言,欢迎继续关注,精彩还将继续!

 
 
本文地址:https://xinb2b.cn/sport/bma196576.html,转载请注明出处。

推荐图文
推荐运动知识
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.036 second(s), 1 queries, Memory 2.38 M