初中数学平面几何中三角形相似题(一道初中几何题-求两个等边三角形的面积之比)

发布日期:2025-02-23 04:35:22     作者:开水糖     手机:https://m.xinb2b.cn/sport/joc214852.html     违规举报

一道初中几何题-求两个等边三角形的面积之比

等边三角形ABC内接另一个等边三角形DEF,并且有DE垂直于BC。三角形DEF的面积与三角形ABC面积比是多少?


解:可以证明等边三角形DEF周围的三个三角形是全等的。

这里简单证明三角形DEC全等于三角EFA。这是因为:

∠EDC=90°, ∠ECD=60°, 那么∠DEC=30°

又因为等边三角形DEF的∠DEF=60°,

因此∠FEC=∠DEF ∠DEC=60° 30°=90°

所以FE垂直于AC,这样这两个三角形DEC和三角形EFA的对应角都相等,

而有直角边EF=DE, 根据角边角定理,这两个三角形全等,同理可证第三个三角形DFB也与它们全等。

因此DC=EA, 若设AC=a, ED=b,

在三角形DBC中,根据30°-60°-90°直角三角形的关系有:

DC=(√3b)/3 , EC=(2√3b)/3,

因而a=AC=EC EA

=EC DC

=(√3b)/3 (2√3b)/3

=√3b,

由于三角形DEF相似于三角形ABC,其其面积之比为相似比的平方,而相似比为:

b/a=1/√3

所以面积之比为1/3

 
 
本文地址:https://xinb2b.cn/sport/joc214852.html,转载请注明出处。

推荐图文
推荐运动知识
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.094 second(s), 1 queries, Memory 0.57 M