我的世界黑科技常用教程(我的世界硬核新玩法)

发布日期:2025-01-22 06:07:02     作者:等你路过     手机:https://m.xinb2b.cn/sport/knq138603.html     违规举报

晓查 凌晨 发自 凹非寺 量子位 报道 | 公众号 QbitAI

可能是疫情吧,大家在现实中行动受限,就越来越多去游戏世界中释放天性。

前有《我的世界》举办毕业典礼,后有《动物森友会》举办AI会议。最近《我的世界》又被大神带来了硬核玩法:


你以为他在涂鸦?不!其实他在进行神经网络的推理。

你如果是一个熟悉神经网络的人,想必已经猜出来了。

图片里这位玩家做的正是MNIST手写数字分类网络。

只需用剑在墙壁上画出数字,神经网络就能知道你写的是几。不仅仅如此,神经网络在推理过程中,哪些神经元被激活,都可以在这里看得一清二楚。


这个脑洞大开的玩家是一位来自印度的小哥Ashutosh Sathe,游戏项目叫做Scarpet-nn

Sathe不仅放出了试玩视频,还开源了代码,如果你是《我的世界》玩家 神经网络炼丹师,那么你也可以把自己的网络放在游戏里。

Scarpet-nn支持卷积层和完全连接层,允许在单个世界中运行多个神经网络。而且可以展示中间张量的逐块激活,甚至还能一次运行多个神经网络。

Sathe小哥到底是怎么想到用《我的世界》来搭建神经网络的呢?

像素风和神经网络是绝配

我的世界里那一个个像素色块简直就是显示3维数组的神器。如果一个长方体的每个小块都用不同颜色来展示数值,那么一个长方体就可以表示一个张量。


但是用表示的范围有限,我的世界地图里的资源也有限,在神经网络中显示BERT什么的显然不切实际。

所以用两种颜色的色块表示二值神经网络(BNN)最合适了。


BNN是一种高度简化的神经网络,权重和激活都只能取两个值: 1或-1。但是计算机中二进制的位表示是不同的。因此在BNN中,我们将 1存储为1为,将-1存储为0。


这样在BNN中乘法运算就变成了逻辑门中的同或运算,而逻辑门在《我的世界》中可以用红石电路造出。


至此,用《我的世界》搭建神经网络的理论基础已经完成,下面开始实际操作。

神经网络转像素模块

我们需要在电脑上安装《我的世界》Java版,第三方Mod也是必不可少的。在这个项目里,我们要安装Litematicacarpetmod两个Mod。

另外还需要通过Python3安装PyTorchnbtlib

接下来就是“炼丹”,先在PyTorch里训练好你的二值神经网络。

Litematica是一个帮助用户从零开始绘制示意图的模块,它可以准确地构建结构,指定将块放置在何处。


运行modeltolitematica.py将神经网络的所有层转换为不同的Litematica示意图。每个示意图仅包含一层神经网络。

图中以紫色表示 1的块,以绿色代表-1的块。

在这一步后,你会获得一组示意图文件,后缀名为.litematica。文件的名称和你命名的网络层相同,比如conv1.weight.litematica、fc2.weight.litematica等等。将相应文件导入即可。


把神经网络铺在地上

由于卷积层会出现4维数组,这在3维空间里是没法表示的,因此这个过程中还加入了压缩。

一般卷积层的形式是:[c2, c1, fh, fw]。其中c2是输出激活的通道数量,c1是输入激活的通道数量,fh和fw是卷积滤波器的高度和宽度。

通过scarpet-nn将后两个维度乘起来,变成[c2, c1, fh× fw],这样就解决了3维显示问题。


而全连接层都是2维的,不存在不能显示的状况,因此不需要做任何调整。


然后你就可以在空地上绘制一张16×16的输入图像了。


将卷积层导入地图后,你就可以进行神经网络运算了。


最后,作者还给出了一个MNIST示意图MineCraft文件包,如果只想简单看看实际运行效果,可以在我们的公众号中回复我的世界获取。

不得不说,《我的世界》里大神太多,之前有复旦本科生从零计算机,现在又有印度小哥从零打造神经网络。

(相关阅读:在《我的世界》里从零打造一台计算机有多难?复旦本科生大神花费了一年心血)


只是现在的模块还不能在《我的世界》里训练神经网络,相信在这些大神的努力下,未来用《我的世界》炼丹也不是梦。

传送门

博客地址:https://ashutoshbsathe.github.io/scarpet-nn/scarpet-apps/twoclassmnist/

Litematica下载地址:http://minecraft.curseforge.com/projects/litematica

源代码:https://github.com/ashutoshbsathe/scarpet-nn

— 完 —

量子位 QbitAI · 头条号签约

关注我们,第一时间获知前沿科技动态

 
 
本文地址:https://xinb2b.cn/sport/knq138603.html,转载请注明出处。

推荐图文
推荐运动知识
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.044 second(s), 1 queries, Memory 0.61 M