与圆有关的最值问题解题步骤(与圆相关的综合题)

发布日期:2024-12-22 11:04:27     作者:追着你心跑     手机:https://m.xinb2b.cn/sport/upb481562.html     违规举报

各位朋友,大家好!“数学视窗”继续与大家分享与圆有关的综合解答题,这道题目有3个小问,第1小题是证明题,难度并不大,属于学生应该掌握的常规题,第2小题是求点的运动路径的长,第3小题虽然难度不是很大,但是要正确判断出何时面积最大,考虑问题要全面。

当然,只有学生熟练掌握了相关知识点,才能顺利做出此题。这道题考查了全等三角形的判定和性质,切线的判定和性质,弧长的计算等。下面,我们就一起来看这道例题吧!

例题:(初中数学综合题)如图,在Rt△OAB中,∠AOB=90°,OA=OB=4,以点O为圆心、2为半径画圆,过点A作⊙O的切线,切点为P,连接OP.将OP绕点O按逆时针方向旋转到OH时,连接AH,BH.设旋转角为α(0°<α<360°).

(1)当α=90°时,求证:BH是⊙O的切线;

(2)当BH与⊙O相切时,求旋转角α和点H运动路径的长;

(3)当△AHB面积最大时,请直接写出此时点H到AB的距离.


分析:大家想要正确解答一道数学题,必须先将思路大致弄清楚。下面就简单分析一下此题的思路:

(1)根据已知条件易证△AOP≌△BOH,得到∠OPA=∠OHB,进一步可以得出∠OPA=90°,进而即可证明BH是⊙O的切线;

(2)过点B可以作两条⊙O的切线BC,BD,然后分情况讨论,当点H与点C或点D重合时,即可分别计算得出答案;

(3)当H运动到与AB的距离最大时,△AHB面积就最大,根据此信息进而可以求得结果.

解答:(以下的过程仅供参考,部分过程进行了精简,并且可能还有其他不同的解题方法)

(1)证明:∵α=90°,∠AOB=90°,

∴∠POH-∠AOH=∠AOB-∠AOH,

即∠AOP=∠BOH,

在△AOP和△BOH中,

OA=OB,

∠AOP=∠BOH,

OP=OH,

∴△AOP≌△BOH(SAS),

∴∠OPA=∠OHB,

∵AP是⊙O的切线,

∴∠OPA=90°,(切线的性质)

∴∠OHB=90°,即OH⊥BH,

∴BH是⊙O的切线;(切线的判定)

(2)如图,过点B作⊙O的切线BC,BD,切点分别为C,D,

连接OC,OD,则有OC⊥BC,OD⊥BD,

∵OC=2,OB=4,

∴cos∠BOC=OC/OB

=2/4=1/2,(利用三角函数求出角度)

∴∠BOC=60°,

同理∠BOD=60°,


由(1)知:点H与点C重合,

当点H与点C重合时,α=90°,

∴弧PH的长为(直接运用弧长公式即可)

90π×2/180=π;

当点H与点D重合时,

α=∠POC ∠BOC ∠BOD=90° 2×60°=210°,

∴弧PH的长为

210π×2/180=7π/3,

∴当BH与⊙O相切时,旋转角α=90°或210°,

点H运动路径的长为π或7π/3;

(3)S△AHB=1/2?AB?h,

h表示AB边上的高,即点H到直线AB的距离,

作ON⊥AB于点N,

由题意可知,在Rt△ONB中,∠OBN=45°,OB=4,

∴ON=OBcos45°=4cos45°=2√2,

∵点H在圆O上运动,

∴h最大=ON OH=2√2 2,

∴当△AHB面积最大时,点H到AB的距离为2√2 2.

(完毕)

这道题具有一定的综合性,熟练掌握切线的判定和性质是解题的关键。温馨提示:朋友们如果有不明白之处或者有更好的解题方法,欢迎大家给“数学视窗”留言或者参与讨论。

 
 
本文地址:https://xinb2b.cn/sport/upb481562.html,转载请注明出处。

推荐图文
推荐运动知识
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.026 second(s), 1 queries, Memory 2.4 M