二项式定理某一项的系数怎么求(用计数原理求二项式展开式中某项的系数)

发布日期:2024-12-22 09:39:07     作者:庸俗的世人     手机:https://m.xinb2b.cn/sport/vdw501626.html     违规举报

昨天发了一篇二项式中赋值法应用的题目,文章后面提到可以用计数原理的方法求二项式展开式中某项的系数,正好有读者问到,今天做一次答疑,这种方法不建议学生使用,了解即可,以三种常见的求展开式中系数的题型为例,分别给出


以上述二项式展开式中的系数为例,怎么理解系数?例如2x²中x²的系数是2,即式子中有两个符号为正的x²相加的形式,例如在(a b)^4中求ab³的系数,即从四个相乘的(a b)的项中,取出一个a,再取出三个b相乘,因为不考虑顺序,分步相乘的方法即为


所以共有四个ab³相加,所以系数为4,如果a,b前面的系数不是1,此时还需要对系数进行处理,即取了几个就需要把系数自乘几次,例如求(3a-b)^4中求ab³的系数,方法类似,注意系数的处理:


了解这些了,处理以下三种题型就很简单了。

题型一、(a b)^n的形式


即从六个相乘的二项式中,取出两个二项式并从中取两个2x²,再从剩余的四个二项式中取四个x^-1即可得到常数项


即从六个相乘的二项式中,取其中的两个二项式并从中取两个x,再从剩余的四个二项式中取四个-√x即可得到常数项


即从五个相乘的二项式中取两个二项式并从中取两个x/2,再从剩余的三个二项式中取三个-2y即可得到x²y³

总结:如果不熟练可按照上面步骤写,先化简一下再根据目标式子的指数来分配所需取的数量,熟练了可直接求。

题型二、(a b c)^n的形式


即从十二个二项式中取两个二项式并从中取两个x,再从剩余的十个二项式中取十个1即可得到x²


本题目若得到常数项,有三种方法,第一种从五个二项式中取一个二项式并从中取2x,从剩下的四个二项式中取一个二项式并从中取x^-1,再从剩下的三个二项式中取三个-1,以下两种和第一种类似,注意系数需要乘几次

总结:括弧内有三项时,三项均可能取到,根据目标式子的指数合理安排即可,万不可遗漏情况。

题型三、(a b)(c d)^n的形式


此时有两个二项式相乘,出现x³y³有两种情况,第一种是从1个(x 2y)中取一个x,再从五个(x y)中取两个x和三个y,第二种是从五个(x y)中取三个x和两个y,再从唯一的(x 2y)取一个y即可


和例6类似,出现x²有两种组合方法,第一种是从四个相乘的二项式(1-x)中取两个二项式并从中取两个-x,再从三个相乘的二项式中取三个1,第二种是从四个相乘的二项式中取一个-x,再从三个相乘的二项式中取两个-√x

总结:这种情况是最复杂的一种,需要从两个不同的二项式中取出符合要求的部分,依旧需要注意不要遗漏了情况。

综上:和直接写出通项公式利用赋值法来求系数相比,这种方法并没有太大优势,反而不仅需要留意系数和系数的符号,还要留意有没有遗漏可能的情况,但题型2和题型3若利用常规方法写通项公式,一般需要写出两个通项公式出来,并对两个参数进行赋值,在这一点,利用计数原理求系数就相对简单一些,这种方法如果熟练,解题很快正确率也高,但如果不熟练,万不可使用该方法。


 
 
本文地址:https://xinb2b.cn/sport/vdw501626.html,转载请注明出处。

推荐图文
推荐运动知识
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.044 second(s), 1 queries, Memory 0.62 M