锰盐催化氧化法机理(光催化CO₂还原基础知识3)

发布日期:2024-12-22 08:34:32     作者:杨纯洁     手机:https://m.xinb2b.cn/tech/heg327810.html     违规举报

光催化CO₂还原过程是通过模拟光合作用,利用太阳能将CO₂和H₂O转化成燃料和高价值化学品的反应过程,光催化方法以其绿色、条件温和等特点被认为是解决全球能源和环境问题最有前途的方案之一[1, 2]。

01

由于光催化CO₂还原反应涉及的产物种类较多,反应产生不同的产物是因反应过程中所需电子数不同引起的,因此光催化CO₂还原反应中不同产率的计算方法与反应过程中转移的电子数息息相关。现整理出光催化CO₂还原反应中明确不同具体产物及其对应转移电子数表格,见下表:

表1. CO₂还原为各种产物及相应电极反应式[3].


02

光催化CO₂还原反应涉及的活性评级指标主要包括以下6种:

▶1.目标产物反应速率(R产物[4]:单位时间内,单位质量催化剂产生的目标产物的物质的量,计算公式如下:


n产物:产物的物质的量(μmol);

R产物:目标产物的反应速率(μmol·h⁻¹·g⁻¹);

m:催化剂的质量(g);

t:反应时间(h)。

▶2.电子消耗速率(R电子[5]:参与反应的有效光生电子速率,计算公式如下:


R电子:电子消耗速率(μmol·h⁻¹·g⁻¹);

R产物:目标产物的反应速率(μmol·h⁻¹·g⁻¹);

K1、K2、K3:不同产物对应转移的电子数,参见表1。

▶3.理论产氧量[6]:根据参与反应的有效光生电子数(空穴数)推导出反应所能生成的O₂含量。


理论产氧量单位:μmol;

n产物:目标产物的物质的量(μmol);

K1、K2、K3:不同产物对应转移的电子数,参见表1。

▶4.选择性(S产物[7]:目标产物的量占产物总量的百分比。


R产物:目标产物的反应速率(μmol·h⁻¹·g⁻¹);

R电子:电子消耗速率(μmol·h⁻¹·g⁻¹);

K1、K2、K3:不同产物对应转移的电子数,参见表1。

▶5.表观量子产率(Apparent Quantum Yield,AQY)[4]:反应体系在特定单色波长下,反应转移的电子数与入射光子数之比。


Ne:反应转移电子总数;

n产物:目标产物的物质的量(μmol);

K1、K2、K3:不同产物对应转移的电子数,参见表1;

Np:入射光子数。

详情点击查看“量子产率(AQY)计算保姆教程”。

▶6.太阳能-化学能转化效率(Solar to Chemical Energy Conversion Efficiency,STC)[8]:输入太阳能转化为化学能的效率,计算公式如下:



R产物:目标产物的反应速率(mol·s⁻¹);

∆Gr:目标反应的摩尔吉布斯自由能(J·mol⁻¹);


Psun:AM 1.5G标准太阳光谱的光功率密度(1000 W·m⁻²);

S:光照面积(m²)。

以上内容信息均来自于文献,编者仅作整理,如有错误,还望及时指出!

参考文献

[1] Shen Huidong, Peppel Tim*, Sun Zhenyu*, et. al., Photocatalytic reduction of CO₂ by metal-free-Based materials: recent advances and future perspective[J]. Solar RRL 2020, 4, 1900546.

[2] Li Xin, Yu Jiaguo*, Jaroniec Mietek* et. al., Cocatalysts for selective photoreduction of CO₂ into solar fuels[J]. Chemical Reviews, 2019, 119, 3962-4179.

[3] Liu Lizhen, Huang Hongwei*, Ma Tianyi*, et. al., Surface sites engineering on semiconductors to boost photocatalytic CO₂ reduction[J]. Nano Energy, 2020, 75, 104959.

[4] Huang Huining, Shi Run*, Zhang Tierui*, et. al., Triphase photocatalytic CO₂ reduction over silver-decorated titanium oxide at a gas-water boundary[J]. Angewandte Chemie International Edition, 2022. DOI: 10.1002/anie.202200802.

[5] Jiang Yong, Chen Hong-Yan*, Kuang Dai-Bin*, et. al., Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO₂ reduction[J] Advanced Functional Materials, 2020, 30, 2004293.

[6] Xu Feiyan, Xu Jinshan*, Yu Jiaguo*, et. al., Graphdiyne: A new photocatalytic CO₂ reduction cocatalyst[J] Advanced Functional Materials, 2019, 29, 1904256.

[7] Fu Junwei, Yu Jiaguo*, Liu Min*, et. al., Product selectivity of photocatalytic CO₂ reduction reactions[J]. Materials Today, 2020, 32, 222-243.

[8] Yoshino Shunya, Iwase Akihide, Kudo Akihiko* et. al., Photocatalytic CO₂ reduction using water as an electron donor under visible light irradiation by Z-scheme and photoelectrochemical systems over (CuGa)0.5ZnS2 in the presence of basic additives[J]. Journal of the American Chemical Society, 2022, 144, 2323-2332.

 
 
本文地址:https://xinb2b.cn/tech/heg327810.html,转载请注明出处。

推荐图文
推荐科技知识
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.040 second(s), 1 queries, Memory 0.6 M