偏导存在一定连续吗(导数函数变化变量)

发布日期:2025-01-15 18:35:58     手机:https://m.xinb2b.cn/yule/news460246.html    违规举报
核心提示:偏导存在不一定连续。在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定。偏导数在向量分析和微分几何中是很有用的。在一元函数中,导数就是函数的变化率。对于二元函数的“变化率”,由于自变量多了一个,情况就要复杂的

偏导存在一定连续吗

偏导存在不一定连续。在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定。偏导数在向量分析和微分几何中是很有用的。在一元函数中,导数就是函数的变化率。对于二元函数的“变化率”,由于自变量多了一个,情况就要复杂的多,于是就要引入偏导数。偏导数反映的是函数沿坐标轴正方向的变化率。偏导数的表示符号为∂。

 
 
本文地址:https://xinb2b.cn/yule/news460246.html,转载请注明出处。

推荐图文
推荐娱乐运动
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.110 second(s), 76 queries, Memory 0.5 M