∫∫e^(-x^2-y^2)dxdy=∫[∫e^(-x^2-y^2)dx]dy,此时先对x积分,y就相当于一个常数,可以提取出来就=∫e^(-y^2)[∫e^(-x^2)dx]dy将权x积分出来后中括号里的就是一个常数那么就可以提取出来就可以整理为=∫e^(-x^2)dx∫e^(-y^2)dy。
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。