拉格朗日乘数法怎么判断极大极小(乘数极值变量微分)

发布日期:2024-12-12 11:54:36     手机:https://m.xinb2b.cn/yule/news496094.html    违规举报
核心提示:用拉格朗日乘数法算出的极值点代到u=f(x,y,z(x,y))=g(x,y)的两个偏导数处,在数学最优问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。这种方法将一个有

拉格朗日乘数法怎么判断极大极小

用拉格朗日乘数法算出的极值点代到u=f(x,y,z(x,y))=g(x,y)的两个偏导数处,在数学最优问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。这种方法将一个有n个变量与k个约束条件的最优化问题转换为一个有n+k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。此方法的证明牵涉到偏微分,全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。

 
 
本文地址:https://xinb2b.cn/yule/news496094.html,转载请注明出处。

推荐图文
推荐娱乐运动
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.147 second(s), 78 queries, Memory 0.51 M