函数连续偏导数一定存在吗(连续函数变化导数)

发布日期:2025-01-08 20:34:27     手机:https://m.xinb2b.cn/yule/news509615.html    违规举报
核心提示:函数连续偏导数不一定存在。因为偏导数存在只能保证函数在某个方向上是连续的,比如关x连续,关y连续,但是实际上,多元函数连续,其极限手段比较复杂比较多,可能是四面八方各个方向。函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很

函数连续偏导数一定存在吗

函数连续偏导数不一定存在。因为偏导数存在只能保证函数在某个方向上是连续的,比如关x连续,关y连续,但是实际上,多元函数连续,其极限手段比较复杂比较多,可能是四面八方各个方向。

函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的,对于这种现象,我们说因变量关于自变量是连续变化的,可用极限给出严格描述:设函数y=f(x)在x0点附近有定义,如果有lim(x->x0)f(x)=f(x0),则称函数f在x0点连续。如果定义在区间I上的函数在每一点x∈I都连续,则说f在I上连续,此时,它在直角坐标系中的图像是一条没有断裂的连续曲线。

 
 
本文地址:https://xinb2b.cn/yule/news509615.html,转载请注明出处。

推荐图文
推荐娱乐运动
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.091 second(s), 82 queries, Memory 0.51 M