1、设A是n阶方阵,如果存在数m和非零n维列向量 x,使得Ax=mx成立,则称 m 是矩阵A的一个特征值(characteristic value)或本征值(eigenvalue)。
2、设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。
1、设A是n阶方阵,如果存在数m和非零n维列向量 x,使得Ax=mx成立,则称 m 是矩阵A的一个特征值(characteristic value)或本征值(eigenvalue)。
2、设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。