为什么两条直线相交只有一个交点(直线公理欧几里德)

发布日期:2025-01-06 02:41:58     手机:https://m.xinb2b.cn/yule/news530157.html    违规举报
核心提示:在欧氏几何学中,两条不平行的直线相交,且交点只有一个。任意两个点可以通过一条直线连接。 任意线段能无限延伸成一条直线。 给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。 所有直角都全等。 若两条直线都与第三条直线相交,并且在

为什么两条直线相交只有一个交点

在欧氏几何学中,两条不平行的直线相交,且交点只有一个。任意两个点可以通过一条直线连接。 任意线段能无限延伸成一条直线。 给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。 所有直角都全等。 若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角,则这两条直线在这一边必定相交。 第五条公里称为平行公理,可以导出下述命题通过一个不在直线上的点,有且仅有一条不与该直线相交的直线。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里德几何,说明平行公理是不能被证明的。从另一方面讲,欧几里德几何的五条公理并不完备。

 
 
本文地址:https://xinb2b.cn/yule/news530157.html,转载请注明出处。

推荐图文
推荐娱乐运动
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.366 second(s), 82 queries, Memory 0.5 M