减函数乘以减函数是什么函数(函数定义区间近代)

发布日期:2025-01-15 17:14:27     手机:https://m.xinb2b.cn/yule/news594821.html    违规举报
核心提示:减函数乘以减函数是减函数,如果函数y=f(x)在区间D上是增函数或减函数,那么就或函数y=f(x)在这一区间具有(严格的)单调性,区间D就叫做函数y=f(x)的单调区间。函数(function)的定义通常分为传统定义和近代定义,函数的两个定

减函数乘以减函数是什么函数

减函数乘以减函数是减函数,如果函数y=f(x)在区间D上是增函数或减函数,那么就或函数y=f(x)在这一区间具有(严格的)单调性,区间D就叫做函数y=f(x)的单调区间。

函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

 
 
本文地址:https://xinb2b.cn/yule/news594821.html,转载请注明出处。

推荐图文
推荐娱乐运动
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.143 second(s), 80 queries, Memory 0.5 M