如何判定级数的发散性(级数收敛发散幂级)

发布日期:2025-01-29 02:00:02     手机:https://m.xinb2b.cn/yule/news656227.html    违规举报
核心提示:1、判定级数的发散性方法如下:看通项un的极限是不是0。如果极限不为0,那么∑un必然发散。如果极限为0,那么∑un就有可能发散也有可能收敛,要具体分析。幂级数Σa_n*x^n(n从0到+∞)在收敛半径之内绝对收敛,在收敛半径之外发散。在收

如何判定级数的发散性

1、判定级数的发散性方法如下:看通项un的极限是不是0。如果极限不为0,那么∑un必然发散。如果极限为0,那么∑un就有可能发散也有可能收敛,要具体分析。幂级数Σa_n*x^n(n从0到+∞)在收敛半径之内绝对收敛,在收敛半径之外发散。在收敛区间端点上有可能条件收敛、绝对收敛或者发散。

2、级数是指将数列的项依次用加号连接起来的函数。典型的级数有正项级数、交错级数、幂级数、傅里叶级数等。级数理论是分析学的一个分支;它与另一个分支微积分学一起作为基础知识和工具出现在其余各分支中。二者共同以极限为基本工具,分别从离散与连续两个方面,结合起来研究分析学的对象,即变量之间的依赖关系──函数。

 
 
本文地址:https://xinb2b.cn/yule/news656227.html,转载请注明出处。

推荐图文
推荐娱乐运动
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.109 second(s), 76 queries, Memory 0.5 M