集合子集个数公式如何证明(子集素有次方集合)

发布日期:2025-01-15 23:36:00     手机:https://m.xinb2b.cn/yule/news745976.html    违规举报
核心提示:如果一个集合的元素有n个,那么它的子集有2的n次方个(注意空集的存在),非空子集有2的n次方减1个,真子集有2的n次方减1个,非空真子集有2的n次方减2个。如果元素少的话可以用枚举法,不过最好的方法还是用二项式定理做。例如:已知一个集合里有

集合子集个数公式如何证明

如果一个集合的元素有n个,那么它的子集有2的n次方个(注意空集的存在),非空子集有2的n次方减1个,真子集有2的n次方减1个,非空真子集有2的n次方减2个。

如果元素少的话可以用枚举法,不过最好的方法还是用二项式定理做。

例如:已知一个集合里有n个元素(下面的C代表组合,其中nCr代表从n个元素内选取r个元素进行组合)

首先子集中元素有0个的有[nC0]

子集元素有1个的有[nC1]

子集元素有2个的有[nC2]

……

子集元素有m个的有[nCm]

……

子集元素有n-1个的有[nC(n-1)]

子集元素有n个的有[nCn]

所以一个有限集合内有[nC0]+[nC1]+[nC2]+……+[nCm]+……+[nC(n-1)]+[nCn]

 
 
本文地址:https://xinb2b.cn/yule/news745976.html,转载请注明出处。

推荐图文
推荐娱乐运动
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.155 second(s), 75 queries, Memory 0.5 M