科普下频率等于概率正确吗及统计与公理化的定义

发布日期:2025-02-08 20:41:44     手机:https://m.xinb2b.cn/baike/news109901.html    违规举报
核心提示:关于到现在频率等于概率正确吗及统计与公理化的定义这个话题,相信很多小伙伴都是非常有兴趣了解的吧,因为这个话题也是近期非常火热的,那么既然现在大家都想要知道频率等于概率正确吗及统计与公理化的定义,小编也是到网上收集了一些与频率等于概率正确吗及

科普下频率等于概率正确吗及统计与公理化的定义

关于到现在频率等于概率正确吗及统计与公理化的定义这个话题,相信很多小伙伴都是非常有兴趣了解的吧,因为这个话题也是近期非常火热的,那么既然现在大家都想要知道频率等于概率正确吗及统计与公理化的定义,小编也是到网上收集了一些与频率等于概率正确吗及统计与公理化的定义相关的信息,那么下面分享给大家一起了解下吧。

不对,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。

统计定义

在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。这个定义称为概率的统计定义。

在历史上,第一个对“当试验次数n逐渐增大,频率nA稳定在其概率p上”这一论断给以严格的意义和数学证明的是雅各布·伯努利(Jacob Bernoulli)。

从概率的统计定义可以看到,数值p就是在该条件下刻画事件A发生可能性大小的一个数量指标。

由于频率 总是介于0和1之间,从概率的统计定义可知,对任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。其中Ω、Φ分别表示必然事件(在一定条件下必然发生的事件)和不可能事件(在一定条件下必然不发生的事件)。

公理化定义

柯尔莫哥洛夫于1933年给出了概率的公理化定义,如下:

设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(A)是一个集合函数,P(A)要满足下列条件:

(1)非负性:对于每一个事件A,有P(A)≥0;

(2)规范性:对于必然事件,有P(Ω)=1;

(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……

 
 
本文地址:https://xinb2b.cn/baike/news109901.html,转载请注明出处。

推荐图文
推荐百科经验
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.367 second(s), 79 queries, Memory 0.51 M