正切的原函数怎么求(函数正切对边角形)

发布日期:2025-02-14 19:10:18     手机:https://m.xinb2b.cn/shenghuo/news319053.html    违规举报
核心提示:正切的原函数:∫tanxdx,=∫sinx/cosxdx,=∫-(1/cosx)dcosx,=-ln|tanx|+C。在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是ta

正切的原函数怎么求

正切的原函数:∫tanxdx,=∫sinx/cosxdx,=∫-(1/cosx)dcosx,=-ln|tanx|+C。

在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。

原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。

 
 
本文地址:https://xinb2b.cn/shenghuo/news319053.html,转载请注明出处。

推荐图文
推荐生活健康
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.111 second(s), 74 queries, Memory 0.5 M