全微分的几何意义(增量曲线无穷小纵)

发布日期:2025-01-21 07:17:36     手机:https://m.xinb2b.cn/shenghuo/news491857.html    违规举报
核心提示:全微分的几何意义是对于某点P0=(X0,Y0),z=f(X,Y)的切平面。设Δx是曲线y=f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy

全微分的几何意义

全微分的几何意义是对于某点P0=(X0,Y0),z=f(X,Y)的切平面。

设Δx是曲线y=f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,可以用切线段近似代替曲线段。

设函数y=f(x)在x的邻域内有定义,x及x+Δx在此区间内。如果函数的增量Δy=f(x+Δx)-f(x)可表示为Δy=AΔx+o(Δx)(其中A是不不随Δx改变的常量,但A可以随x改变),而o(Δx)是比Δx高阶的无穷小。

 
 
本文地址:https://xinb2b.cn/shenghuo/news491857.html,转载请注明出处。

推荐图文
推荐生活健康
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  违规举报  |  蜀ICP备18010318号-4  |  百度地图  | 
Processed in 0.238 second(s), 80 queries, Memory 0.5 M