无理数是无限小数。无限小数包括无限循环小数和无限不循环小数,无限不循环小数就是无理数,而无限循环小数是有理数,所以无理数是无限小数正确,但是无限小数不一定是无理数。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
无理数是无限小数。无限小数包括无限循环小数和无限不循环小数,无限不循环小数就是无理数,而无限循环小数是有理数,所以无理数是无限小数正确,但是无限小数不一定是无理数。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。