设a,b,c是三个向量。要证a,b,c共面,只要证a,b,c的混合积为0,或者证其中一个可以由另外两个线性表示,例如:证存在实数x、y使得a=x·b+y·c。
共面定理的定义为能平移到一个平面上的三个向量称为共面向量。共面向量定理是数学学科的基本定理之一。属于高中数学立体几何的教学范畴。主要用于证明两个向量共面,进而证明面面垂直等一系列复杂定理。
设a,b,c是三个向量。要证a,b,c共面,只要证a,b,c的混合积为0,或者证其中一个可以由另外两个线性表示,例如:证存在实数x、y使得a=x·b+y·c。
共面定理的定义为能平移到一个平面上的三个向量称为共面向量。共面向量定理是数学学科的基本定理之一。属于高中数学立体几何的教学范畴。主要用于证明两个向量共面,进而证明面面垂直等一系列复杂定理。