1、齐次坐标就是将一个原本是n维的向量用一个n+1维向量来表示,是指一个用于投影几何里的坐标系统,如同用于欧氏几何里的笛卡儿坐标一般。
2、其他投影空间:齐次坐标的数值若为实数,则会得出一般实投影空间内的一个点。不过,该数值可以为任意的体,特别是在复投影空间里,使用的数值为复数。例如,复投影线在齐次坐标中以两个数值表示之,称之为黎曼球面。其他的体,包括有限体,也都可以被使用。用于投影空间的齐次坐标亦可使用除环来建立。不过,在此情况下,必须小心考虑其乘法可能是不可交换的。
1、齐次坐标就是将一个原本是n维的向量用一个n+1维向量来表示,是指一个用于投影几何里的坐标系统,如同用于欧氏几何里的笛卡儿坐标一般。
2、其他投影空间:齐次坐标的数值若为实数,则会得出一般实投影空间内的一个点。不过,该数值可以为任意的体,特别是在复投影空间里,使用的数值为复数。例如,复投影线在齐次坐标中以两个数值表示之,称之为黎曼球面。其他的体,包括有限体,也都可以被使用。用于投影空间的齐次坐标亦可使用除环来建立。不过,在此情况下,必须小心考虑其乘法可能是不可交换的。